Search
Descriptor English: Regression Analysis
Descriptor Spanish: Análisis de Regresión
 Descriptor análisis de regresión Entry term(s) disgnósticos de regresión regresión estadística Scope note: Procedimientos para encontrar la función matemática que mejor describa la relación entre una variable dependiente y una o más variables independientes. En la regresión lineal (véase MODELOS LINEALES) la relación se reduce a ser una línea recta y se utiliza en el ANÁLISIS DE LOS MÍNIMOS CUADRADOS para determinar el mejor ajuste. En la regresión logística (véase MODELOS LOGÍSTICOS) la variable dependiente es cualitativa en lugar de continua y se utilizan las FUNCIONES DE VEROSIMILITUD para encontrar la mejor relación. En la regresión múltiple se considera que la variable dependiente depende de más de una sola variable independiente.
Descriptor Portuguese: Análise de Regressão
Descriptor French: Analyse de régression
Entry term(s): Analyses, Regression
Analysis, Regression
Diagnostics, Regression
Regression Analyses
Regression Diagnostics
Regression, Statistical
Regressions, Statistical
Statistical Regression
Statistical Regressions
Tree number(s): E05.318.740.750
N05.715.360.750.695
N06.850.520.830.750
RDF Unique Identifier: https://id.nlm.nih.gov/mesh/D012044
Scope note: Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.
Annotation: IM GEN only; coord NIM with specific disease or other concept (IM); no qualif; specify geog if pertinent
Allowable Qualifiers: No qualifiers
Previous Indexing: Statistics (1966-1972)
Public MeSH Note: 80; was see under STATISTICS 1975-79
History Note: 80(73); was see under STATISTICS 1975-79
Entry Version: REGRESSION ANAL
DeCS ID: 28609
Unique ID: D012044
Documents indexed in the Virtual Health Library (VHL): Click here to access the VHL documents
Date Established: 1980/01/01
Date of Entry: 1999/01/01
Revision Date: 2008/07/08
 Actuarial Analysis Analysis of Variance Biometry Cluster Analysis Factor Analysis, Statistical Models, Statistical Probability Sensitivity and Specificity Spatial Analysis Statistical Distributions Stochastic Processes Survival Analysis Analysis of Variance Cluster Analysis Factor Analysis, Statistical Models, Statistical Probability Sensitivity and Specificity Spatial Analysis Statistical Distributions Stochastic Processes Survival Analysis Analysis of Variance Cluster Analysis Factor Analysis, Statistical Models, Statistical Probability Sensitivity and Specificity Spatial Analysis Statistical Distributions Stochastic Processes Survival Analysis
Regression Analysis - Preferred
 Concept UI M0018726 Scope note Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Preferred term Regression Analysis Entry term(s) Analyses, Regression Analysis, Regression Diagnostics, Regression Regression Analyses Regression Diagnostics Regression, Statistical Regressions, Statistical Statistical Regression Statistical Regressions

# We want your feedback on the new DeCS / MeSH website

## We invite you to complete a survey that will take no more than 3 minutes. 